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Abstract The central scheme of Nessyahu and Tadmor (J. Comput. Phys, 87(1990)) has the benefit of not
having to deal with the solution within the Riemann fan for solving hyperbolic conservation laws and
related equations. But the staggered averaging causes large dissipation when the time step size is small
comparing to the mesh size. The recent work of Kurganov and Tadmor (J. Comput. Phys, 160(2000))
overcomes the problem by use of a variable control volume and obtains a semi-discrete non-staggered
central scheme. Motivated by this work, we introduce overlapping cell averages of the solution at the
same discrete time level, and develop a simple alternative technique to control the O(1/∆t) dependence
of the dissipation. Semi-discrete form of the central scheme can also be obtained. This technique
is essentially independent of the reconstruction and the shape of the mesh, thus could also be useful
for Voronoi mesh. The overlapping cell representation of the solution also opens new possibilities
for reconstructions. Generally more compact reconstruction can be achieved. We demonstrate through
numerical examples that combining two classes of the overlapping cells in the reconstruction can achieve
higher resolution. Overlapping cells create self similarity in the grid and enable the development of
central type discontinuous Galerkin methods for convection diffusion equations and elliptic equations
with convection, following the series works of Cockburn and Shu (Math. Comp. 52(1989)).

Keywords: Central Scheme, discontinuous Galerkin Method, ENO scheme, MUSCL scheme, TVD scheme.

1. Introduction
Godunov scheme first captures the shock wave in a narrow transition layer. It is based on evolving

piece-wise cell average representations of the solution by evaluating the flux at the cell boundary
which is obtained from solving a Riemann problem. Various higher resolution schemes has been
developed such as FCT, MUSCL, TVD schemes, PPM, ENO, WENO, etc. Unlike Godunov scheme,
Lax-Friedrich scheme does not need to solve a Riemann problem. The central scheme of Nessyahu
and Tadmor (NT) (NeTa90) provides the higher order generalization of the Lax-Friedrich scheme
and is based on a staggered average of the piece-wise polynomial representation of the solution, thus
avoids dealing with the Riemann fan originated from the jump values at the cell edges. Further
developments on central schemes can be found in e.g. SaWe92; JiTa98; JiLeLiOsTa98; LiTa98;
BiPuRu99; KuLe00; AeSt03; KuNoPe01; KuTa00; LePuRu02, etc. The relaxation scheme of Jin
and Xin (JiXi95) provides another approach to nonlinear conservation laws.

Central schemes provide a black box type solution to nonlinear hyperbolic conservation laws and
other closely related equations since essentially one only needs to supply the flux function. Similar
approaches can also be achieved with upwind schemes with a Lax-Friedrich type flux function or
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building block, see e.g. Shu and Osher (ShOs88; ShOs89), Liu and Osher (LiOs98). Since the
central schemes usually use staggered average, the time step size cannot be passed to zero. Similar
situation occurs in the 2D conservative front tracking and is overcome by use of space-time cells
in Glimm et. al. (GlLiLiXuZh03). In KuTa00, Kurganov and Tadmor introduce a new kind of
central scheme without the large dissipation error related to the small time step size by use of
a variable control volume whose size depends on time step size. By passing to the limit as the
time step size goes to zero, the non-staggered semi-discrete central Godunov type scheme can be
developed to which standard Runge-Kutta methods or the TVD Runge-Kutta methods (Shu and
Osher, ShOs88) can be applied. This allows the central scheme to be used for a larger class of
equations where time step size could be small comparing to the mesh size.

In Liu (Li04), an alternative technique is introduced to control the dissipative error of central
schemes. The major idea is to introduce an overlapping cell representation of the solution which
allows a convex combination of the overlapping cell averages. An immediate advantage is that the
time discretization becomes simple and more robust by use of the TVD Runge-Kutta method (
ShOs88) due to the self similarity of overlapping cells over time. Also by use of a time step size
dependent convex combination of the overlapping cell averages, the O(1/∆t) dependent dissipative
error can be easily controlled. Various reconstruction methods (e.g., MUSCL, ENO, WENO etc)
can be applied to the overlapping cells in a standard way by separating them into two classes and
applying the reconstruction method to each class. More efficient application of the reconstruction
methods using the combined information from the overlapping cell averages has also been explored
and require further study particularly in higher space dimensions. The use of overlapping cells opens
many new possibilities. For example, central discontinuous Galerkin type approach on overlapping
cells becomes feasible due to the self similarity of the cells, following the works of Cockburn and
Shu (CoSh89; CoSh91; CoSh98, etc). Also the semi-discrete form on overlapping cells results in a
central type locally conservative elliptic solver which could be suitable for elliptic equations with
large advection.

2. Central Schemes on Overlapping Cells
Consider 1D conservation law

∂u

∂t
+

∂f(u)
∂x

= 0, (x, t) ∈ R× (0, T ). (1.1)

Let {xi} be a uniform partition in R, with ∆x = xi+1 − xi. Denote xi+1/2 = 1
2(xi + xi+1).

Let Ui approximate the cell average
∫ xi+1/2

xi−1/2
u(x, t)dx and Ui+1/2 approximate the cell average∫ xi+1

xi
u(x, t)dx. Denote Un

i = Ui(tn), Un
i+1/2 = Ui+1/2(tn). By applying a MUSCL or ENO re-

construction for the two sets of cell averages, one obtains a function µn(x) which is a piece-wise
polynomial for cells {(xi−1/2, xi+1/2) : i = 0,±1,±2, · · · } and a function νn(x) which is a piece-wise
polynomial for cells {(xi, xi+1) : i = 0,±1,±2, · · · }. For conservation purpose, they should satisfy
1

∆x

∫ xi+1/2

xi−1/2
µn(x)dx = Un

i and 1
∆x

∫ xi+1

xi
νn(x)dx = Un

i+1/2. Let ∆tn = tn+1 − tn be the current time
step size, following Nessyahu and Tadmor (NeTa90), the central scheme with forward Euler time
discretization can be written on overlapping cells as follows

Un+1
i = 1

∆x

∫ xi+1/2

xi−1/2
νn(x)dx − ∆tn

∆x [f(νn(xi+1/2)) − f(νn(xi−1/2))],

Un+1
i+1/2 = 1

∆x

∫ xi+1

xi
µn(x)dx − ∆tn

∆x [f(µn(xi+1)) − f(µn(xi))].
(1.2)

The higher order time discretization can be obtained by applying the TVD Runge-Kutta time
discretization procedure (ShOs88). Kurganov and Tadmor (KuTa00) point out that since the
numerical dissipation from 1

∆x

∫ xi+1/2

xi−1/2
νn(x)dx does not depend on ∆tn, the cumulative error will
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Figure 1.1. (A) NT scheme; (B) 1D overlapping cells; (C) overlapping cells create self similarity for the grid over
time and allow a convex combination of the overlapping cell averages to control the dissipation.

depend on O(1/∆t), the total number of time steps in the computation. Therefore when ∆t is very
small, e.g. ∆t = O(∆x2) for convection diffusion equations, the numerical dissipation becomes
large. This is easily seen if f(u) ≡ 0, then what the central scheme does is conservative rezoning
at every time step, which will smear out the solution with the number of iterations increasing. By
choosing the size of the control volume (xi, xi+1) proportional to ∆t, this O(1/∆t) dependence can
be removed and by passing to the limit as ∆t → 0, semi-discrete Godunov type central schemes
can be developed (KuTa00). Liu (Li04) introduces another easy modification of the NT scheme to
remove the O(1/∆t) dependence of the error taking advantage of the overlapping cell representation
Un

i and Un
i+1/2. The idea is to use a time dependent weighted average of 1

∆x

∫ xi+1/2

xi−1/2
νn(x)dx and Un

i

in (1.2), which does not change the order of accuracy of the scheme. In fact the difference between
them is the local dissipation error. Suppose ∆tn ≤ ∆τn and ∆τn is an upper bound for the current
time step size due to the CFL restriction. The forward Euler form of the new central scheme can
be formulated as follows

Un+1
i = θ( 1

∆x

∫ xi+1/2

xi−1/2
νn(x)dx) + (1 − θ)Un

i − ∆tn
∆x [f(νn(xi+1/2)) − f(νn(xi−1/2))],

Un+1
i+1/2 = θ( 1

∆x

∫ xi+1

xi
µn(x)dx) + (1 − θ)Un

i+1/2 − ∆tn
∆x [f(µn(xi+1)) − f(µn(xi))],

(1.3)

where θ = ∆tn/∆τn. Note that when θ = 1, it becomes the scheme (1.2). The comparison of
schemes (1.2) and (1.3) for Burgers equation with very small time step size can be found in Fig.
1.2 (a) and (b). One can also obtain the following semi-discrete form by moving Un

i and Un
i+1/2 to

the left hand side and multiplying both side by 1
∆tn

, then passing to the limit as ∆tn → 0

d
dtUi(tn) = 1

∆τn∆x

∫ xi+1/2

xi−1/2
νn(x)dx − 1

∆τn
Un

i − 1
∆x [f(νn(xi+1/2)) − f(νn(xi−1/2))],

d
dtUi+1/2(tn) = 1

∆τn∆x

∫ xi+1

xi
µn(x)dx − 1

∆τn
Un

i+1/2 − 1
∆x [f(µn(xi+1)) − f(µn(xi))].

(1.4)

Note that this semi-discrete form doesn’t need to explicitly evaluate the jump values of νn(x)
and µn(x) across their respective cell edges (which is one of the features of the NT scheme). See
Fig. 1.1. We have the following theorem.

Theorem 1 Let the schemes (1.2) and (1.3) start from the same time tn with the same initial
values Un

i , Un
i+1/2. If the scheme (1.2) is TVD from time step tn to tn + ∆τn, then the scheme

(1.3) is also TVD from time tn to tn + ∆tn, for any ∆tn ∈ [0,∆τn].

The theorem provides some insights into two reconstruction procedures: one is standard to recon-
struct for the two classes of cell averages {Un

i : i = 0,±1,±2, · · · } and {Un
i+1/2 : i = 0,±1,±2, · · · }

separately; the other mixes the two classes in the reconstruction. In Table 1.1 the comparison of
errors is shown for a 1D linear translation (ut + ux = 0) of sin(πx) computed by central scheme on
overlapping cells (1.4) by use of the ENO quadratic reconstruction on two classes of cells separately
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∆x 1/10 1/20 1/40 1/80 1/160 1/320

l1 error E1 0.0117 0.00147 0.000184 2.30e-05 2.88e-06 3.60e-07

order - 2.99 3.00 3.00 3.00 3.00

l1 error E2 0.00406 0.000506 6.32e-05 7.89e-06 9.86e-07 1.23e-07

E1/E2 2.88 2.91 2.91 2.92 2.92 2.93

Table 1.1. E1: reconstruction done for two classes of cells separately; E2: reconstruction on combined overlapping
cells.

(E1) and on combined overlapping cells (E2). Comparison of the two kinds of reconstructions are
shown for the Shu-Osher problem (ShOs89) in Fig. 1.2 (c) and (d); for Lax problem in (e) and
(f). Note that without characteristic decomposition, they achieve high resolution in the Shu-Osher
problem while keeping a non-oscillatory profile for the Lax problem even with quite large cell size.
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Figure 1.2. (a) Central scheme for Burgers equation without dissipation control, ∆t = ∆x2/16, (b) with dissipation
control (1.3); (c) Shu-Osher problem (ShOs89), reconstruction done for two classes of cells separately, ∆x = 1/40,
(d) reconstruction done for combined overlapping cells; (e)Lax problem, reconstruction done for two classes of cells
separately, ∆x = 1/100, (f) reconstruction done for combined overlapping cells. (g)2D overlapping cells by collapsing
the staggered dual cells on two adjacent time levels to one time level; (h) 2D Riemann Problem (LaLi98) computed
by DLM, ∆x = 1/200. (a), (b) 2nd order; (c)-(f), (h) 3rd order. All without characteristic decomposition.

Note that in (1.3),

θ(
1

∆x

∫ xi+1/2

xi−1/2

νn(x)dx) + (1 − θ)Un
i = Un

i +
∆tn
∆τn

(
1

∆x

∫ xi+1/2

xi−1/2

νn(x)dx − Un
i ).

and ∆τn = O(∆x) is due to the CFL restriction for the scheme (1.2). Therefore the local dissipative
error now has a factor of ∆tn and the cumulative error will not be degenerated by choosing very
small ∆tn. In the lowest order case, scheme (1.3) can be viewed as a Godunov type scheme with a
Lax-Friedrich flux.
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3. Central Schemes on Overlapping Cells for Convection Diffusion
Equations

Consider the convection diffusion equation

∂u

∂t
+

∂f(u)
∂x

=
∂

∂x
(a(u, x, t)

∂u

∂x
), (x, t) ∈ R× (0, T ), (1.5)

where a(u, x, t) ≥ 0. Following the work of Kurganov and Tadmor (KuTa00), we can discretize
equation (1.5) in the new setting as follows

Un+1
i = θ( 1

∆x

∫ xi+1/2

xi−1/2
νn(x)dx) + (1 − θ)Un

i − ∆tn
∆x [f(νn(xi+1/2)) − f(νn(xi−1/2))]

+∆tn
∆x [a(Un

i+1/2, xi+1/2, tn)
Un

i+1−Un
i

∆x − a(Un
i−1/2, xi−1/2, tn)

Un
i −Un

i−1

∆x ],
Un+1

i+1/2 = θ( 1
∆x

∫ xi+1

xi
µn(x)dx) + (1 − θ)Un

i+1/2 − ∆tn
∆x [f(µn(xi+1)) − f(µn(xi))]

+∆tn
∆x [a(Un

i+1, xi+1, tn)
Un

i+3/2
−Un

i+1/2

∆x − a(Un
i , xi, tn)

Un
i+1/2

−Un
i−1/2

∆x ],

(1.6)

where θ = ∆tn/∆τn, ∆τn is maximum time step size determined by the CFL restriction for the
hyperbolic part of the equation (1.5), ∂u

∂t + ∂f(u)
∂x = 0. We have the following stability theorem.

Theorem 2 Let the schemes (1.2) and (1.6) start from the same time tn with the same initial
values Un

i , Un
i+1/2. If the scheme (1.2) is TVD from time step tn to tn + ∆τn, then the scheme

(1.6) is also TVD from time tn to tn + ∆tn, for any ∆tn ≤ ∆τn∆x2

∆x2+2an∆τn
, with

an = sup{a(Un
i+1, xi+1, tn), a(Un

i+1/2, xi+1/2, tn) : i = 0,±1,±2, · · · }.

We can also obtain a semi-discrete form of (1.6) similar to (1.4). Explicit Runge-Kutta methods with
larger time step size have been developed in Medovikov (Me98), Verwer (Ve96) etc for semi-discrete
equations. Implicit-explicit Runge-Kutta time discretizations, e.g. Ascher et. al. (AsRuSp97),
Kennedy and Carpenter (KeCa03), etc, may also be applied to the semi-discrete form of (1.6).

4. Multi Space Dimensions
For rectangular grid, dimension by dimension line methods are the most convenient high order

(≥ 3) methods for multi-dimensional problems. For example, in Shu and Osher (ShOs88; ShOs89),
the ENO scheme is formulated in a dimension by dimension approach; in Kurganov and Tadmor (
KuTa00), the semi-discrete central scheme is also formulated in a dimension by dimension approach
for multi dimensional problems. A 2D diagonal line method (DLM) is introduced in Liu (Li04)
for central scheme on overlapping cells using 1D quadratic ENO reconstruction along diagonal
lines on combined two classes of overlapping cells, and using dimension by dimension (diagonal)
approximation to the flux derivatives (without evaluation at quadrature points). The most common
(staggered) overlapping cell averages are defined as in Fig. 1.2(g). Each of the two diagonal axises
passes through exactly 5 overlapping cells. We may view them as 1D overlapping cell averages
as in Fig. 1.1(B) following the strategy of PPM (Colella and Woodward, CoWo84), thus the 1D
quadratic ENO reconstruction can be adapted to the 1D overlapping cells. The convergence tests
on 2D linear translations show that DLM has 3rd order accuracy even though the 1D quadratic
ENO reconstruction along diagonal lines only has 2nd order accuracy (since the cell averages are
2D), see Table 1.2. The other 2D tests also confirm the high resolution of DLM, see Fig. 1.2(h).
Note that there is no overlapping within the cells with solid boundary lines (Fig. 1.2(g)) or within
the cells with dash boundary lines, therefore conventional line reconstruction can also be applied to
each class of the cells separately. The reason for combining the overlapping cells in reconstruction
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∆x, ∆y 1/20 1/40 1/80 1/160 1/320 1/640

l1 error 0.231 0.0359 0.00464 0.000583 7.30e-05 9.22e-06

order - 2.69 2.95 2.99 3.00 2.99

Table 1.2. Convergence test for DLM for ut + (2u)x + uy = 0, (x, y) ∈ [0, 1]2 with periodic boundary condition.
u(x, y, 0) = sin(2πx + 4πy) + 1

3
cos(2πy), T = 1.

is to achieve better resolution (Li04) taking advantage of the “effectively refined grid” (in space,
not time! The time step size doesn’t change).

Finite volume ENO type high order reconstruction for combined overlapping cells is also impor-
tant because it can be applied to unstructured meshes such as the Voronoi mesh. Second order
reconstruction (e.g., MUSCL) for combined overlapping cells is straight forward as described in
Li04 and has been tested to have good robustness. Higher order finite volume ENO reconstruction
separately for each class of the cells (no overlapping within each class, see Fig. 1.2(g)) should be
standard.

5. Central Discontinuous Galerkin Methods on Overlapping Cells
for Convection Diffusion Equations

Following the general strategy of discontinuous Galerkin methods (see e.g. Lesaint and Raviart (
LeRa74), Cockburn (Co98) etc) and the series works of Cockburn and Shu (CoSh89 etc), the central
type discontinuous Galerkin method can be derived on overlapping cells. Consider the system of
convection diffusion equations

∂ui
∂t + � · f i(u) = � · (Ai(u,x, t) � ui), (x, t) ∈ Rd × (0, T ), i = 1, · · · ,m, (1.7)

where ui is the ith component of u, Ai is a matrix. For simplicity, assume a uniform staggered
rectangular mesh (see Fig. 1.2(g) for the 2D case). The formulation for irregular staggered mesh,
e.g., the Voronoi mesh which is a triangular mesh plus its dual, is similar. Let CI , I = (i1, i2, · · · , id)
be a (open) cell of a uniform rectangular mesh in Rd (the cells bounded by solid lines in Fig.
1.2(g))and xI be the cell centroid. Let ∆x be the cell size. Let M be the set of piece-wise
polynomials of degree r over the cells {CI} with no continuity assumed across the cell boundary.
Let DJ , J = (i1 + 1/2, i2 + 1/2, · · · , id + 1/2) be a (open) cell of the dual mesh which is the shift of
the original mesh along the vector (1

2∆x, 1
2∆x, · · · , 1

2∆x) (the cells bounded by dash lines in Fig.
1.2(g)). Let xJ be the cell centroid of the cell DJ . Let N be the set of piece-wise polynomials of
degree r over the cells {DJ} with no continuity assumed across the cell boundary. The smooth
solution of (1.7) will satisfy

d
dt

∫
CI

uiΦidx =
∫
CI

fi · �Φidx− ∫
∂CI

(fi · n)Φids+

∫
CI

� · (AT
i � Φi)uidx− ∫

∂CI
ui(AT

i � Φi) · nds+

∫
∂CI

Φi(Ai � ui) · nds, ∀Φi ∈ M, i = 1, · · · ,m, ∀I,

(1.8)

d
dt

∫
DJ

uiΨidx =
∫
DJ

fi · �Ψidx − ∫
∂DJ

(fi · n)Ψids+

∫
DJ

� · (AT
i � Ψi)uidx− ∫

∂DJ
ui(AT

i � Ψi) · nds+

∫
∂DJ

Ψi(Ai � ui) · nds, ∀Ψi ∈ N , i = 1, · · · ,m, ∀J,

(1.9)
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where n is the unit outer normal of the corresponding cell,
∫
∂CI

F (s)ds denotes
∫
∂CI

F (s)|CI
ds.

Let Un
i ∈ M and V n

i ∈ N both be the numerical approximations of the solution ui(·, tn). On the
right hand side of the equation (1.8), replace the ui (u) by V n

i (Vn) and use the integration by
part formula (similarly for (1.9)). The central discontinuous Galerkin formulation on overlapping
cells with forward Euler time discretization from tn to tn+1 = tn + ∆tn (with dissipation control as
in (1.3)) is to find Un+1

i ∈ M and V n+1
i ∈ N such that

∫
CI

Un+1
i Φidx = θ

∫
CI

V n
i Φidx + (1 − θ)

∫
CI

Un
i Φidx + ∆tn{

∫
CI

fi(Vn) · �Φidx−∫
∂CI

(fi(Vn) · n)Φids +
∑

J [
∫
CI∩DJ

� · (Ai � V n
i )Φidx+∫

CI∩∂DJ
V n

i (AT
i � Φi) · nds − ∫

CI∩∂DJ
Φi(Ai � V n

i ) · nds]},
∀Φi ∈ M, i = 1, · · · ,m, ∀I,

∫
DJ

V n+1
i Ψidx = θ

∫
DJ

Un
i Ψidx + (1 − θ)

∫
DJ

V n
i Ψidx + ∆tn{

∫
DJ

fi(Un) · �Ψidx−∫
∂DJ

(fi(Un) · n)Ψids +
∑

I [
∫
DJ∩CI

� · (Ai � Un
i )Ψidx+∫

DJ∩∂CI
Un

i (AT
i � Ψi) · nds − ∫

DJ∩∂CI
Ψi(Ai � Un

i ) · nds]},
∀Ψi ∈ N , i = 1, · · · ,m, ∀J,

(1.10)

where θ = ∆tn/∆τn ≤ 1, ∆τn is the maximum time step size determined by the CFL restriction for
the hyperbolic part of the equation (1.7) (i.e., assuming the right hand side is 0), ∆tn = tn+1 − tn
is the current time step size. Note that the last two boundary integral terms of (1.8) and (1.9) are
canceled out in (1.10) due to the continuity, which is different from usual discontinuous Galerkin
methods. Semi-discretized version of the (1.10) can be easily obtained similar to (1.4), to which
various higher order Runge-Kutta time discretization methods can be applied. If we make the
corresponding diffusive fluxes in the above formula implicit (or use an implicit-explicit Runge-Kutta
method to the corresponding semi-discretized version), we obtain an implicit central discontinuous
Galerkin method which enables large time step size. It is the use of overlapping cells that makes it
possible because otherwise the fluxes may not be able to be represented in the implicit form. Even
though the two equations in (1.10) are coupled, when written down in the matrix form, one can
easily eliminate one class of unknowns, say {Un+1

i }, which is similar to the procedure of mixed finite
element method for the incompressible Navier-Stokes equation (see. e.g. Fortin, Fo93). Therefore
we are actually solving two N × N sparse systems instead of a 2N × 2N sparse system.

6. Application to Elliptic Equations with Convection
Consider the equation (1.7) without the time dependence term

−� ·(Ai(u,x) � ui) + � · fi(u) = 0, (x, t) ∈ Rd × (0, T ), i = 1, · · · ,m, (1.11)

The corresponding central discontinuous Galerkin approach on overlapping cells can be ob-
tained as follows: (a) write equation (1.10) in a semi-discrete form by moving the corresponding∫
CI

Un
i Φidx or

∫
DJ

V n
i Ψidx terms to the left hand side and multiplying both side by 1/∆tn, then

passing to the limit as ∆tn → 0; (b) drop the time derivative term. (1.10) becomes
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1
∆τ

∫
CI

(Vi − Ui)Φidx + {∫CI
fi(V) · �Φidx−∫

∂CI
(fi(V) · n)Φids +

∑
J [

∫
CI∩DJ

� · (Ai � Vi)Φidx+∫
CI∩∂DJ

Vi(AT
i � Φi) · nds − ∫

CI∩∂DJ
Φi(Ai � Vi) · nds]} = 0,

∀Φi ∈ M, i = 1, · · · ,m, ∀I,

1
∆τ

∫
DJ

(Ui − Vi)Ψidx + {∫DJ
fi(U) · �Ψidx−∫

∂DJ
(fi(U) · n)Ψids +

∑
I [

∫
DJ∩CI

� · (Ai � Ui)Ψidx+∫
DJ∩∂CI

Ui(AT
i � Ψi) · nds − ∫

DJ∩∂CI
Ψi(Ai � Ui) · nds]} = 0,

∀Ψi ∈ N , i = 1, · · · ,m, ∀J.

(1.12)

Here ∆τ is inherited from ∆τn in (1.10) and can be determined similarly. This central discontinuous
Galerkin formulation is locally conservative. Existing locally conservative finite element methods
to this type of equation are control volume methods (see Baliga and Patankar (BaPa80), Liu
and McCormick (LiMc88), Cai and McCormick (CaMc90), etc), skew-symmetric discontinuous
Galerkin methods (see e.g. Oden et. al., OdBaBa98, Baumann and Oden, BaOd99, Riviere et.
al., RiWhGi01) and mixed methods (see e.g. BrFo91). The distinctive feature of the central
discontinuous Galerkin formulation on overlapping cells would be its central type treatment to the
convection without using any upwind information. The use of overlapping cells allows a convex
combination of the overlapping cell elements to control the dissipation from staggering and the
resulting semi-discrete form of (1.10) makes (1.12) possible. A benefit is that this formulation
doesn’t require the diffusive matrix A to be symmetric.
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